

Data Analysis for A Better Understanding of the Weekday/Weekend O₃ and PM Differences

Betty K. Pun and Christian Seigneur AER, San Ramon, CA

Warren White Washington University, St. Louis, MO

"Weekend Effect" Research Workgroup Meeting 16 November 1999

Introduction

CRC Project A-36B is a data analysis project to study weekday/weekend differences in O₃ and PM in areas outside CA

Objectives

- At 3 urban locations outside CA, study the day-of-the-week dependence of
 - diurnal profile of hourly O₃ concentrations
 - daily maximum 1-hour and 8-hour O_3
 - $-PM_{10}$ and $PM_{2.5}$
- Test hypotheses for the "weekend effect"
- Identify changes in the weekday/weekend difference over a longer period

Technical Approach

Selection of Airsheds

Region	O ₃ non-	PAMS	Air quality studies	
	attainment		O ₃	PM
Atlanta, GA	Serious	4	SOS*	ARIES
Philadelphia, PA	Severe	5	NARSTO*	MAACS
Houston, TX	Severe	6	COAST*	TSPMP
Lake Michigan,	Severe	8	LMOS*	
MI, IL, WI				
Nashville, TN	Moderate	0	SOS*	MAACS

^{*} Data base available for 3-D air quality modeling

Selected Sites

Hypothesis Testing

- 1. Changes in emissions of NO_x and VOC
 - Hourly NO_x, VOC, VOC/NO_x from SLAMS/NAMS
 - Photochemical indicators from PAMS and special field studies
- 2. Increased carryover due to Friday and Saturday night traffic
 - Hourly CO, NO_x from SLAMS/NAMS

Hypothesis Testing (Continued)

- 3. Changes in traffic patterns: temporal
 - Hourly CO, NO_x, VOC, and NO_x/VOC
 - Composition of VOC mixture from PAMS
- 4. Changes in traffic patterns: spatial
 - CO, NO_x, and VOC at several metropolitan monitors
 - Maps to display patterns

Hypothesis Testing (Continued)

- 5. Sources other than on-road mobile sources
 - Speciated VOC and PM data from PAMS and IMPROVE
 - Marker species
- 6. Changes in PM emissions affect light extinction and photochemistry
 - Solar/UV radiation and PM from NAMS/SLAMS, PAMS, and IMPROVE
 - Visibility from NOAA data base

Data Analyses

- Hour-of-the-week
 - e.g., mean, median

Clock plots

Frequency distribution

Data Analyses (Continued)

- Correlations
 - e.g., visibility vs. PM_{2.5}

- Seasonality
 - Same as above by season
- Statistical significance
 - Bootstrap sampling

Project Team

- AER
 - Project manager: Christian Seigneur
 - Betty Pun, Kristen Lohman, Yang Zhang
- Warren White